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Forecast in foreign exchange markets
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1 Departement Finance et Économie, Groupe HEC, 78351 Jouy-en-Josas Cedex, France
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Abstract. We perform a statistical study of weak efficiency in Deutschemark/US dollar exchange rates
using high frequency data. The presence of correlations in the returns sequence implies the possibility of a
statistical forecast of market behavior. We show the existence of correlations and how information theory
can be relevant in this context.

PACS. 89.65.Gh Economics, business, and financial markets – 65.40.Gr Entropy and other thermody-
namical quantities

1 Introduction

A large amount of research suggests that prices are related
with information and in particular it focuses on efficiency
in financial markets. A market is inefficient if a speculator
can make a profit out of information present in the market.
Since the celebrated work of Fama [1] a big effort has been
done to test empirically and to understand theoretically
the efficiency of financial markets.

A market is said to be efficient if prices “fully reflect”
all available information, i.e. such information is com-
pletely exploited in order to determine the price, after
having taken into account the costs to use this information
and a transient time, due to costs, to reach equilibrium.
The idea is that the investor destroys information while
using it and as a consequence he contributes to produce
equilibrium.

In the last years long term correlations have been ob-
served in financial markets. We shall not review in details
the contributions to the field. We stress that long term re-
turn anomalies are usually revealed via test of efficiency in
a semi-strong form, i.e. not only considering asset prices
but also some other publicly known news. The interest is
generally focused on market reactions to an event occurred
a fixed lag before (three to five years typically) such as di-
vested firms [2], mergers [3] or initial public offerings [4,5].
Recent research (see e.g. [6–11]) has pointed out the ex-
istence of long range correlations also in the weak form.
However only low frequency data are considered and im-
plications on efficiency are not completely understood.

In this paper we focus on efficiency in the weak
form, i.e. we consider only the information coming from
historical prices. We are interested on a time scale longer
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than the typical correlation returns time (few minutes) but
lower than the characteristic time after which we do not
have statistical relevance of the results (roughly a couple of
weeks): in this sense we deal with long term return anoma-
lies. Currency exchange seems to be the natural subject
for an efficiency test. We expect that such markets are
very efficient as a consequence of their large liquidity.

For these reasons we have decided to analyze a one
year high frequency dataset of the Deutschemark/US dol-
lar exchange, the most liquid market. Our data, made
available by Olsen and Associated, contains all worldwide
1, 472, 241 bid-ask Deutschemark/US dollar exchange rate
quotes registered by the inter-bank Reuters network over
the period October 1, 1992 to September 30, 1993.

One of the main problem in tick data analysis, is the
irregular spacing of quotes. In this paper we consider busi-
ness time, i.e. the time of the transaction given by its rank
in the sequence of quotes. This seems to be a reasonable
way to consider time in a worldwide time series, where
time delays and lags of no transaction are often due to ge-
ographical reasons. With business time we eliminate most
of the seasonality in the financial signal.

In this paper we test the independence hypothesis of
returns and define and measure the available information.
In Section 2 we check the independence with two different
techniques. The first one, called structure functions analy-
sis, shows whether it is possible to rescale properly the dis-
tribution functions at different lags [12]. The second one is
a direct independence test. The independence of two ran-
dom variables x, y implies that f(x) and g(y) are uncorre-
lated for every f and g. We check it for f(·) = g(·) = | · |q.
We interpret these quantities as an estimate of the corre-
lation between returns of given size.

We want to quantify the available information and dis-
cuss its financial relevance. In Section 3 we consider a
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speculator with a given resolution, i.e. he is concerned
only about fluctuations at least of size ∆. This reminds
the ε entropy introduced by Kolmogorov [13] in the con-
text of information theory. A similar filter has been first
introduced by Alexander [14,15]. To show the inefficiency
of the market he proposed the following trading rule: if the
return moves up of∆, buy and hold until it goes down of∆
from a subsequent high, then sell and maintain the short
position till the return rises again of ∆ above a subsequent
low. In a similiar way we show that some information is
available in financial series and how this information is
related to market efficiency.

In Section 4 we summarize and discuss the results.

2 Long term correlations

After the seminal work of Bachelier [16], it was widely be-
lieved that price variations follow an independent, zero
mean, Gaussian process. The main implications of the
“fundamental principle” of Bachelier are that the price
variation is a martingale and it is an independent random
process.

Bachelier considers the market a “fair game”: a specu-
lator cannot exploit previous information to make better
predictions of forthcoming events. Information can come
only from correlations and in absence of them from the
shape of the probability distribution of returns.

For about sixty years this contribution was practi-
cally forgotten, and quantitative analysis on financial data
started again with advent of computers.

Following [1], we shall call hereafter “random walk”
the financial models where the returns

rt ≡ ln
St+1

St
(1)

are independent variables. In this paper we define St as the
average between bid and ask price. We do not want to en-
ter here in a detailed analysis of the huge literature about
“random walk” models. We just mention that, before the
contribution of Mandelbrot [17], the return rt was consid-
ered well approximated by an independent Gaussian pro-
cess. Mandelbrot proposed that returns were distributed
according a Levy-stable, still remaining independent ran-
dom variables.

At present, it is commonly accepted that the variables

r
(τ)
t ≡

t+τ−1∑
t′=t

rt′ = ln
St+τ
St

(2)

do not behave according a Gaussian at small τ , while the
Gaussian behavior is recovered for large τ . Of course a
return rt distributed according to a Levy, as suggested by
Mandelbrot, is stable under composition and then also r(τ)

t

would follow the same distribution for every τ . A recent
proposal is the truncated Levy distribution model intro-
duced by Mantegna and Stanley [18] which fits well the
data and reproduces the transition from small to large τ .

The other deviation from a behavior à la Bachelier
comes from the presence of correlations in the financial
signal. In this paper we focus our attention on indepen-
dence tests. We remark once again that an influence of
the return rt at time t on the return rt+τ at time t + τ
implies a not fully efficient market in a weak form. The
relevance of the question is clear in the case of an investor
who analyzes historical data to forecast market behavior
and to make a profit out of this information.

As a test of independence it is generally considered the
correlation functions on time intervals τ

C(τ) ≡ 〈rtrt+τ 〉 − 〈rt〉〈rt+τ 〉 , (3)

where 〈·〉 denotes the temporal average

〈A〉 ≡ 1
T

T∑
t=1

At

and T is the size of the sample.
The presence of correlations in Deutschemark/US dol-

lar exchange returns before the nineties is a well known
fact. For example [19], who consider the same dataset we
use, show that the returns are negatively correlated for
about three minutes. However the presence of long term
memory (e.g. in a lag up to two weeks) and its conse-
quences on investment rules have not been shown up to
now.

A sort of long term memory can be revealed with
appropriate tools, see for example the seminal works in
the field [14,15] and [20], and the most recent literature
[6–9,21,22], where it is shown that absolute returns or
powers of returns exhibit a long range correlation. It is a
common belief that it is not possible to exploit this kind
of information because of transaction costs.

We shall show in the next section that dependent re-
turns have a clear financial meaning, because they imply
the existence of available information.

In Section 2.1 we show the persistence of a long range
memory for the Deutschemark/US dollar exchange rate
by means of the analysis of structure functions. In Sec-
tion 2.2, we test directly the independence of returns with
a generalization of the correlation analysis.

2.1 Structure functions

There is some evidence that the process r(τ)
t cannot be

described in terms of a unique scaling exponent [23,24],
i.e. it is not possible to find a real number h such that the
statistical properties of the new random variable r(τ)

t /τh

do not depend on τ .
The scaling exponent h gives us information on the fea-

tures of the underlying process. In the case of independent
Gaussian behavior of rt the scaling exponent is 1/2.

On the contrary, the data show that the probabil-

ity distribution function of r(τ)
t /

√
Var[r(τ)

t ] changes with
τ [23,24]. This is an indication that rt is a dependent
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Fig. 1. Structure functions 1
q

log2 Fq(τ ) versus log2 τ for Deutschemark/US dollar exchange rate quotes. The three plots

correspond to different value of q: q = 2.0 (◦), q = 4.0 (�) and q = 6.0 (+). In the inset we show ξq versus q. We estimate with
linear regression two different regions in this graph. The first one is a line of slope 0.5 (dashed line), and the second has a slope
0.256 (dash dotted line).

stochastic process and it implies the presence of wild fluc-
tuations.

A way to show these features, which is standard for
the fully developed turbulence theory [25], is to study the
structure functions:

Fq(τ) ≡ 〈|r(τ)
t |q〉 . (4)

In the simple case where rt is an independent random
process, one has (for a certain range of τ)

Fq(τ) ∼ τhq , (5)

where h > 1/2 in the Levy-stable case while the Gaussian
behavior is recovered for h = 1/2. The truncated Levy dis-
tribution corresponds to h > 1/2 for τ sufficiently small
and to h = 1/2 at large τ . “Random walk” models present
always a unique scaling exponent. If the structure func-
tion has the behavior in (5) we call the process self-affine
(sometimes called uni-fractal).

As previously mentioned a description in terms of a
unique scaling exponent h does not work. Therefore in-
stead of (5) one has

Fq(τ) ∼ τξq , (6)

where ξq are called scaling exponents of order q. If ξq is
not linear, the process is called multi-affine (sometimes
multi-fractal). Using simple arguments it is possible to see
that ξq has to be a convex function of q [26]. The larger
is the difference of ξq from the linear behavior in q the
wilder are the fluctuations and the correlations of returns.

In this sense the deviation from a linear shape for ξq gives
an indication of the relevance of correlations.

In Figure 1 we plot, the Fq(τ) for three different val-
ues of q. A multi-affine behavior is exhibited by different
slopes of 1

q log2(Fq) vs. log2(τ), at least for τ between 24

and 215 business times (which roughly correspond to few
minutes and two weeks respectively). For larger lags a spu-
rious behavior can arise because of the finite size of the
dataset considered. In the inset we plot the ξq estimated
by standard linear regression of log2 Fq(τ) vs. log2(τ) for
the values of τ mentioned before. To give an estimation
of errors, the most natural way turns out to be a division
of the year dataset in two semesters. This is natural in
the financial context, since it is a measure of reliability of
the second semester forecast based on the first one. We
observe that the traditional stock market theory (Brown-
ian motion for returns), gives a reasonable agreement with
ξq ' q/2 only for q < 3, while for q > 6 one as ξq ' h̃q+ c

with h̃ = 0.256 and c = 0.811. We stress once again that
such a behavior cannot be explained by a “random walk”
model (or other self-affine models) and this effect is a clear
evidence of correlations present in the signal.

2.2 Long term correlations analysis

Let us consider the absolute returns series {|rt|}, which is
often shown to be long range correlated in recent literature
[6–9,21,22]. Absolute values mean that we are interested
only in the size of fluctuations.
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Fig. 2. log2 δq versus log2 τ . The three plots correspond to different value of q: q = 1.0 (◦), q = 1.8 (�) and q = 3.0 (+). In the
inset we show βq versus q, the horizontal line shows value β = 1 corresponding to independent variable.

Let us introduce the generalized correlations Cq(τ):

Cq(τ) ≡ 〈|rt|q|rt+τ |q〉 − 〈|rt|q〉〈|rt+τ |q〉 . (7)

We shall see that the above functions will be a powerful
tool to study correlations of returns with comparable size:
small returns are more relevant at small q, while Cq(τ) is
dominated by large returns at large q (the usual definition
of correlation for absolute returns is recovered for q = 1).

Following the definitions in [27], let us suppose to have
a long memory for the absolute returns series, i.e. the cor-
relations Cq(τ) approaches zero very slowly at increasing
τ , i.e. Cq(τ) is a power-law:

Cq(τ) ∼ τ−βq .

Instead of directly computing correlationsCq(τ) of sin-
gle returns we consider rescaled sums of returns. This is a
well established way, if one is interested only in long term
analysis, in order to drastically reduce statistical errors
that can affect our quantities [28]. Let us introduce the
generalized cumulative absolute returns [10]

χt,q(τ) ≡ 1
τ

τ−1∑
i=0

|rt+i|q (8)

and their variance

δq(τ) ≡ 〈χt,q(τ)2〉 − 〈χt,q(τ)〉2 . (9)

After some algebra one can show that if Cq(τ) for large τ
is a power-law with exponent βq, then δq(τ) is a power-law
with the same exponent:

Cq(τ) ∼ τ−βq =⇒ δq(τ) ∼ τ−βq βq < 1 .

If |rt|q is an uncorrelated process one has that δq(τ)
scales with βq = 1.

In other words the hypothesis of long range memory
for absolute returns (βq < 1), can be checked via the nu-
merical analysis of δq(τ).

In Figure 2 we plot the δq vs. τ in log-log scale, for
three different values of q. The variance δq(τ) is affected
by small statistical errors, and it confirms the persistence
of a long range memory for a τ larger than 24 and up
to 215, as in Section 2.1.

The exponent βq can be profitably estimated by stan-
dard linear regression of log2(δq(τ)) versus log2(τ), and
the errors are estimated in the same way of Section 2.1.

We notice in the inset that the “random walk” model
behavior is remarkably different from the one observed
in the Deutschemark/US dollar exchange for q < 3. This
implies the presence of strong correlations, while one has
βq = 1 for large values of q, i.e. big fluctuations are prac-
tically independent.

3 Available information

Let us focus our attention on information analysis of the
return rt. We must treat the dataset in such a way that
methods of information theory can be applied.

Let us remind some basic steps needed to use informa-
tion theory in time series analysis:

– Obtain a discrete symbolic sequence from the original
signal rt:

c1, c2, . . . , ci, . . .
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Fig. 3. hn versus n. The three plots correspond to different value of ∆: ∆ = 0.00005 (◦), ∆ = 0.0002 (�) and ∆ = 0.004 (+).
The dotted line indicates ln(2).

where each ci takes only a finite number, say m, of
values.

– Consider a sequence of n symbols Cn =
{c1, c2, . . . , cn}, its probability p(Cn) and the
block entropy Hn

Hn ≡ −
∑
Cn

p(Cn) ln p(Cn) . (10)

– The difference

hn ≡ Hn+1 −Hn (11)

represents the average information needed to specify
the symbol cn+1 given the previous knowledge of the
sequence {c1, c2, . . . , cn}.
The series of hn is monotonically not increasing and

for an ergodic process one has

h = lim
n→∞

hn (12)

where h is the Shannon entropy [29].
It is easy to show that if the stochastic process

{c1, c2, . . . } is Markovian of order k (i.e. the probabil-
ity to have cn at time n depends only on the previous k
steps n − 1, n − 2, . . . , n − k), then hn = h for n ≥ k.
The maximum value of h is ln(m). It occurs if the process
has no memory at all and the m symbols have the same
probability.

The difference between ln(m) and h is intuitively the
quantity of information we may use to forecast future be-
havior, given the present information. We define available
information:

I ≡ ln(m)− h = R ln(m) (13)

where R = 1 − h/ ln(m) is called the redundancy of the
process [29].

Hereafter we limit the discrete process to take only two
values, −1 and 1 which have an evident financial mean-
ing: the symbol −1 occurs if the stock price decreases,
otherwise the symbol is 1.

The procedure to create the symbolic sequence is :

– we fix a resolution value ∆ and we define

rt,t0 ≡ ln
St
St0

, (14)

where t0 is the initial business time, and t > t0. We
wait until an exit time t1 such as:

|rt1,t0 | ≥ ∆ .

In this way we consider only market fluctuations of
amplitude ∆.

– following the previous prescription we create a se-
quence of returns

{rt1,t0 , rt2,t1 , . . . , rtk,tk+1 , . . . } ,

from which we obtain the symbolic dynamics:

ck =

{
−1 if rtk,tk+1 < 0
+1 if rtk,tk+1 > 0

. (15)

In Figure 3 it is shown that the entropy is clearly dif-
ferent from ln(2) in a wide range of ∆, i.e. there is a set
of ∆ for which the available information (see Eq. (13)) is
very large.

In Figure 4 we plot the available information versus ∆
and the distribution of transaction costs. Because these
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Fig. 4. Available information I∆ versus ∆ (on the left), superimposed to the distribution of transaction costs, P (γ) versus γ
(on the right).

two quantities do not have similar size they are plotted
on different vertical scales but they are superimposed to
make easier comparison between them. We observe that
the maximum of the available information is almost in
correspondence to the maximum of the distribution of the
transaction cost.

We have estimated the transaction costs γ as

γt =
1
2

ln
S

(ask)
t

S
(bid)
t

' S
(ask)
t − S(bid)

t

2S(bid)
t

·

It can be shown, following Kelly [30], that the available
information is equal to the growth rate of capital following
a given trading rule (and forgetting the costs involved).

It is then easy to comment the shape of the available
information shown in Figure 4.

The speculator cannot have a resolution ∆ lower than
the transaction costs, profits from such an investment
would be in fact less than costs. For ∆ fluctuation larger
than the typical transaction cost it starts to become pos-
sible to use part of the information present in the market
and the available information decreases. For large ∆, all
investors are able to discover the available information and
to make it profitable with a feasible strategy. As a conse-
quence, the efficient equilibrium is then restored for all
practical purposes.

We want to stress, however, that once transaction costs
are included and liquidity constraints are properly consid-
ered (the speculator should use heavily leverage to be able
to use available information) the efficiency hypothesis is
practically restored for all ∆s.

4 Conclusions

In this paper we have considered the long term anoma-
lies in the Deutschemark/US dollar quotes in the period
from October 1, 1992 to September 30, 1993 and we have
analyzed the consequences on the weak efficiency of this
market.

In Section 2 we have shown the presence of long term
anomalies with two techniques: the structure functions
and a generalization of the usual correlation analysis. In
particular we have pointed out that “random walk” mod-
els (or other self-affine models) cannot describe these fea-
tures.

Once we have shown the existence of correlations in
financial process, we have tested whether they allow for a
profitable strategy.

With such a goal in mind, in Section 3 we have mea-
sured the available information with a technique which re-
minds the Kolmogorov ε entropy. An investor, who waits
to modify his portfolio till the asset has a fluctuation ∆,
observes a finite available information.

However, the existence of such a trading rule does not
imply that the investment is feasible in practice. Namely it
can be shown that when realistic investments are involved
almost no available information survives.

The technique described here can be considered as a
powerful tool to test weak efficiency and a graphical way to
show how speculation contributes to reach efficient equi-
libria destroying the available information present in the
market.
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